Characteristics of CuO doped WO3-SnO2Thick Film Gas Sensors
نویسندگان
چکیده
منابع مشابه
Integrated ultra-thin-film gas sensors
The fabrication and performance of an ultra-thin-film integrated gas sensor for detecting impurities in semiconductor process gases are described. Detector responses are based on gas-induced resistance changes in an ultra-thin Ti-P film mounted on a thin dielectric window supported by a silicon rim. The window temperature can be shifted several hundred degrees Celsius in less than one second. G...
متن کاملThickness Dependence of Sensitivity in Thin Film Tin Oxide Gas Sensors Deposited by Vapor Pyrolysis
Transparent SnO2 thin films were deposited on porcelain substrates using a chemical vapor deposition technique based on the hydrolysis of SnCl4 at elevated temperatures. A reduced pressure self-contained evaporation chamber was designed for the process where the pyrolysis of SnCl4 at the presence of water vapor was carried out. Resistive gas sensors were fabricated by providing ohmic contacts o...
متن کاملSensing Behavior Of CuO-Doped SnO2 Thick Film Sensor For H2S Detection
The effect of CuO doping on the electrical resistance and the sensitivity of thick film gas sensors based on CuOdoped (1%, 2% and 5% by wt.) SnO2has been investigated by us. A suitable gas sensor structure wasfabricated on 1 ̋x1 ̋ alumina substrate using thick film technology. The fabricated sensor‟s reaction with H2S gas (250 ppm-1000 ppm)was tested in the temperature range of 150350 ̊C. At 250 ̊C...
متن کاملSelective detection of naphthalene with nanostructured WO3 gas sensors prepared by pulsed laser deposition
Pulsed laser deposition (PLD) at room temperature with a nanosecond laser was used to prepare WO3 layers on both MEMS microheater platforms and Si/SiO2 substrates. Structural characterization showed that the layers are formed of nanoparticles and nanoparticle agglomerates. Two types of layers were prepared, one at an oxygen partial pressure of 0.08 mbar and one at 0.2 mbar. The layer structure ...
متن کاملDoped and Dedoped Polyaniline Nanofiber Based Conductometric Hydrogen Gas Sensors
Template-free, rapid polymerisation was employed to synthesize polyaniline nanofibers using chemical oxidative polymerisation of aniline, with HCl as a dopant. The doped and dedoped nanofibers were deposited onto conductometric sapphire transducers for gas sensing applications. The sensors were exposed to various concentrations of hydrogen (H2) gas at room temperature. The sensitivity was measu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Institute of Electrical and Electronic Material Engineers
سال: 2010
ISSN: 1226-7945
DOI: 10.4313/jkem.2010.23.12.956